DIFFUSION OF PARTICLES IN DENSE DISPERSIVE SYSTEMS

Yu. A. Buevich UDC 532.72

We obtain an equation describing the diffusion of particles suspended in a liquid. This
equation differs from Fick's by the term 8%c/8t?, which takes account of the fact that the
particle displacement velocity is finite in the diffusion process.

Particles suspended in the flow of a liquid or gas may undergo chaotic fluctuating motion imposed
on the average motion of the dispersed phase as a whole, These fluctuations of individual particles or
groups of particles (packets) are particularly intensive in concentrated and comparatively coarse dis-
persive systems (the pseudoliquefaction or pneumatic transport of large particles, etc.). In many cases
they have a definite effect on both the theoretical properties of the dispersive system and the heat and mass
transport process in it (2 review of experimental investigation on fluctuations and their effect on heat and
mass transport in the pseudoliquefied layer is given, for example in [1, 2]).

One of the most important problems in practice is the description of the effect of these fluctuations on
the displacement of the dispersed phase in the system. For various applications it is desirable to have a
means of continuously describing the displacement using a differential equation, but without any analysis of
the random bebavior of the actual separate particles. From the analogy between the suspended particles
and the molecules of a gas, or from the analogy between the dispersed phase and a turbulent liquid, it is
natural to characterize the intensity of the displacement using the effective diffusion coefficients of the
particles in the system. This is usually done, the simple Fick diffusion equation, which is strictly valid
only as wg/ w* - <, being used, without sufficient justification. That this equation can be applied to the
diffusion of gases does not give rise to doubts in view of the high velocities of the molecules in thermal
motion. But for suspended particles, the velocities w* and wg are usually comparable with each other and
in this connection it is necessary both to have a stricter justification for the diffusion analogy and to re-
fine Fick's equation for this case.

The diffusion of suspended particles, determined by their fluctuating motions, has two further charac-
teristics by comparison with the diffusion of the molecules of a gas. First, the fluctuations of the par-
ticles are usually anisotropic, so that in general we have to deal not with a unique scalar diffusion coef-
ficient, but a tensor of diffusion coefficients D = || Dijil, as occurs, for example, in diffusion in a turbulent
field. Second, the spatijal scale of the fluctuations ("the mixing length") in many cases is comparable with
the dimensions of the apparatus containing the dispersive system. A limitation in the diffusion analogy
under these conditions is repeatedly emphasized by Todes and his colleagues is indicated, for example, in

21.

To obtain diffusionequations we use the method below which was developed in [3]. We assume that the
particles are in equilibrium in the sense that the total average force on each particle is zero. This implies
that the average velocity of any particle is also zero, or can be made zero by an appropriate choice of the
coordinate system. In addition, we assume that the disequilibrium of the system is small, i.e., the diffu-~
sion flux J of particles is small. In this case the distribution function for the fluctuating velocities w of the
particles can be written approximately as [3]
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Here c*w’dw and J*w?dw are the mass concentration and the mass flux of the particles, the velocity of
which lies in the range (w, w + dw) in modulus

cr@ir, =m{fw r, Hdw, I @i, )= m | Fw; r, ywdw, @

e(r, By = Sc*(w; r, Hwidw, J(r, 1) = jJ* (w; 1, ) WPdw.
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We see that when f£(w; r, t) is given by (1), the first of (2) holds identically.

If we neglect the interaction of the particles with each other and with the random fluctuations in the
supporting flow, we can take the equation of continuity as defining the distribution function
of

of
w o 3
ot dar 0 3

this being a particular case of Liouville's equation when the average force on a particle is zero.

To take account of the interactions we consider the particles in some element of volume of the im-
purity, taken below as unit volume, and later moving out of that volume., We describe this volume further
as a "black box," ignoring the details of the interaction processes in it. To do this we introduce the variable
q(W, W) which is the probability that the particles in the box with velocity w = ww;, where W; = Iwoi[,
leave it with velocity w' = ww{, where W{ = |W61|- Thus, we consider the scattering of the particles by the
"black box" under the condition that the modulus of the particle velocity remains constant.t Obviously this
is impermissible if the period in the "black box," i.e., the interaction of the particles with each other and
with the fluctuations in the supporting flow do not change the average pulsation energy of the particles (cf.

(3.

The variable (W, W') can be written as

3
g(W, W) =(1—g)I+g(WSW), S=IS,, X S;;=1, S;; >0,
j=1

where I is the unit tensor; 8 is the matrix (tensor) of probabilities, normalized by the probability of the
certain event, and q < 1 is the probability of an arbitrary scattering of the particles in the "black box,"

The elements §;;, with various values of j, are the moduli of the direction cosines of the most probable
velocity of 2 scattered particle under the condition that the particle velocity before scattering was in the
direction of the i-axis. The necessity to introduce the angular dependence for the probability (W, W) is
in general associated with the anisotropy of the scattering of the particles in the "black box." The case
investigated in [3] when the probability of scattering in a given direction depends only on the angle between
the vectors w and w', corresponds to the matrix

100

S=(g—¢q)i0 10
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+q,{1 1 1% (4
11 1]

Thus, in particular, we see that the above type of scattering reduces to the simplest isotropic scat-
tering if we change the definition of q. For the scattering of the molecules of a gas we usually have q = nQ,
where n; is the concentration of the scattering centers and Q is the effective scattering cross section, The
quantity A = (gQ)~! is the length of the mean free path of a particle with velocity w between successive

scattering events,

Following [3], we obtain the equation

* *
P LU B R N

w3y 3 wa ), (5)
w? ot or w? or w o

T This does not imply, of course, the assumption that the modulus of the velocity of any marked particle

is constant as it passes through the "oblack box." We consider only the assemblies of particles entering and
leaving and state that if the average pulsation energy of the particles is conserved, the number of them
entering the box with velocity w is on the average equal to the number of particles leaving the box with the
same velocity.
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where we have introduced the new tensor A, defined by the equation
wAT 1 = (wi#) | (W'SW)dW' — [ (WSW') w'J* aw’, (6)

For isotropic scattering, or scattering depending only on the angle between w and w', we have é'l
=nQland A = (ntQ)"il = AI Thus, the tensor A, defined in (6), can be considered as the tensor of the
effective lengths of the "mean free path" of a particle with veloeity w.

We see that Eq. (5) containsterms of two types: terms invariant with respect to the transformation w
— —w, and terms which change their sign under this transformation. From (5) we obtain the following
two equations;
dc* 3 dwl® A o) wA dc*
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The diffusion equation in Fick's form is obtained from this when A = AT and when we ignore the
term in 8J*/ot in the second equation of (7), which corresponds to assuming the changes in the diffusion
flow are relatively slow and, conversely that the displacements of the particles are very rapid. The cor-
responding calculation was made in [3].

If we eliminate J* from (7), we obtain a unique equation for c*:

* 2 2
N z(w 9 c*——a—c—*—, A(w) =w (WAL,
Aw) ot dr or - -

This equation depends on the direction of the vector w which, of course, is connected with the ap-
proximate representation (1) for the distribution function. The degree of its validity is not destroyed if in
it we average over the directions of w., Then we obtain a new equation:

w  Oc* ) e d%c
T | i am) ST
: . (8)
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The variable A(w), introduced here, has the meaning of a scalar mean free path length for particles
with velocity w. In the isotropic case A(w) = (niQ)‘i, i.e., it does not depend on w.

We introduce the average mean free path length of a particle A and the tensor D of diffusion coef-
ficients, which are defined by the equations

wr (@ @ 1) dw, iﬂ’iDij = j‘ w,w; R t)f(w; r, Hdw. (9)
8 Aw) ¢, 8 A efr,

The meaning of these equations is obvious. In fact they are similar to the corresponding definitions
in [3]. Then, averaging (8) with respect to the modulus of the velocity, we obtain the equation

Oc 0 0 A0
= D— — | ———s— ¢, 10
ot [( or 0r> w* Otz] (10)
By (9), this equation can be rewritten as
aiz Di_.a_)_g:g_ o c, trD:Dii‘ (11)
/) or Or w* o

Equations similar to (10) or (11) can also be written for the volume concentration of particles in the
system, p, or for the porosity of the dispersive system € =1 —p. From (10) and (11) we see that the dif-
fusion equation in Fick's form is valid for

1 A

T, WF

~%i*— &1 or DL w®, (12)

where 74 is a characteristic time of the diffusion process; and D is a typical value of the diffusion coeffi-
cient,
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The relations (12) fail to hold when the mixing length of the particles in the system increases and
their fluctuation velocity decreases. Estimates, based on the experimental results in [1, 2], show that
Fick's equation is a very rough approximation for the investigation of nonstationary diffusion in dispersive
systems and must be replaced by the more accurate Eq. (10) or (11). Moreover, it is this last equation
which we must use in calculating many of the variables which are of interest in various technological pro-
cesses and in conditions of stationary diffusion. As an example we can indicate the calculation of the time
a particle spends in the pseudoliquefied layer when the charging rate is constant.
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NOTATION

is the mass concentration of the particles;

is the mass diffusion flux;

is the mean square velocity of pulsation of the particles;

is the diffusion rate (the ratio I/c);

is the pulsation velocity distribution of particles;

is the tensor of diffusion coefficients;

is the probability matrix;

is the tensor of lengths of the mean free path of the particles;
are the scalar mean free path lengths introduced in different ways (cf. Egs. (7)-(9));
is the characteristic time of diffusion;

is the volume element in velocity space;

is the corresponding solid angle element;

is the solid angle element in first quadrant of velocity space.
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